My PhD eBookshelf

Adams, N. M. (2010). Methods and models in statistics. London, UK: Imperial College Press.
Adler, J. (2009). R in a nutshell. Sebastapol, CA: O’Reilly.
Aggarwal, C. C., & Wang, H. (2010). Managing and mining graph data. New York, NY: Springer.
Agresti, A. (2002). Categorical data analysis (2nd ed.). New York, NY: Wiley.
Aickin, M. (2002). Causal analysis in biomedicine and epidemiology: Based on minimal sufficient causation. New York, NY: Marcel Dekker.
Albert, J. (2009). Bayesian computation with R. New York, NY: Springer.
Allison, P. D. (1995). Survival analysis using the SAS System: A practical guide. Cary, NC: SAS Institute.
Alon, N., & Spencer, J. H. (2000). The probabilistic method (2nd ed.). New York, NY: Wiley.
Altman, D. G., Machin, D., & Gardner, M. J. (2000). Statistics with confidence: Confidence intervals and statistical guidelines (2nd ed.). London, UK: BMJ Books.
Antoniou, A.-S. G., & Cooper, C. L. (2005). Research companion to organizational health psychology. Cheltenham, UK: Elgar Publishing.
Applebaum, D. (2008). Probability and information: An integrated approach (2nd ed.). Cambridge, UK: Cambridge University Press.
Arksey, H., & Harris, D. (2007). How to succeed in your social science degree. Thousand Oaks, CA: Sage Publications.
Ash, R. B. (1990). Information theory. New York, NY: Dover Publications.
Ashenfelter, O., Levine, P. B., & Zimmerman, D. J. (2003). Statistics and econometrics: Methods and applications. New York, NY: Wiley.
Balakrishnan, V. K. (2010). Schaum’s outlines: Graph theory. New York, NY: McGraw-Hill.
Bandemer, H.-W. (2006). Mathematics of uncertainty: Ideas, methods, application problems. New York, NY: Springer.
Barker, C., Pistrang, N., & Elliot, R. (2002). Research methods in clinical psychology: An introduction for students and practitioners (2nd ed.). New York, NY: Wiley.
Bean, M. A. (2001). Probability: The science of uncertainty: With applications to investments, insurance, and engineering. Pacific Grove, CA: Brooks/Cole.
Berg, B. A. (2004). Markov chain Monte Carlo simulations and their statistical analysis. Hackensack, NJ: World Scientific Publishing.
Bergman, B. (2009). Robust design methodology for reliability. New York, NY: Wiley.
Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York, NY: Wiley.
Bernstein, S., & Bernstein, R. (1999). Schaum’s outlines: Elements of statistics I: Differential statistics and probability. New York, NY: McGraw-Hill.
Bernstein, S., & Bernstein, R. (2010). Schaum’s outlines: Elements of statistics II: Inferential statistics. New York, NY: McGraw-Hill.
Best, J. (2004). More damned lies and statistics: How numbers confuse public issues. Berkeley, CA: University of California Press.
Bidgood, P. (2010). Assessment methods in statistical education. New York, NY: Wiley.
Bird, K. D. (2004). Analysis of variance via confidence intervals. Thousand Oaks, CA: Sage Publications.
Blaxter, L., Hughes, C., & Tight, M. (2006). How to research (3rd ed.). New York, NY: Open University Press.
Bluman, A. G. (2005). Probability demystified. New York, NY: McGraw-Hill.
Blythe, J. (2006). Marketing. Thousand Oaks, CA: Sage Publications.
Bolton, D., & Hill, J. (1996). Mind, meaning, and mental disorder: The nature of causal explanation in psychology and psychiatry (2nd ed.). Oxford, UK: Oxford University Press.
Booth, W. C. (2008). Craft of research. Chicago, IL: University Of Chicago Press.
Boslaugh, S. (2008). Statistics in a nutshell. Sebastapol, CA: O’Reilly.
Bourque, L. B., & Fielder, E. P. (2003). How to conduct self-administered and mail surveys. Thousand Oaks, CA: Sage Publications.
Braun, W. J. (2007). A first course in statistical programming with R. Cambridge, UK: Cambridge University Press.
Brewerton, P., & Millward, L. (2001). Organizational research methods: A guide for students and researchers. Thousand Oaks, CA: Sage Publications.
Brink, D. (2010). Compendium of probability and statistics: Ventus.
Brown, C. (2006). Cognitive psychology. Thousand Oaks, CA: Sage Publications.
Brown, C. (2006). Social psychology. Thousand Oaks, CA: Sage Publications.
Brown, R. B. (2006). Doing your dissertation in business and management. Thousand Oaks, CA: Sage Publications.
Brze?niak, Z., & Zastawniak, T. (1999). Basic stochastic processes. New York, NY: Springer-Verlag.
Buglear, J. (2001). Stats means business: A guide to business statistics. Boston, MA: Butterworth-Heinemann.
Burchfield, R. W. (2010). The new Fowler’s modern English usage (revised ed.). Oxford, UK: Oxford University Press.
Burgess, H. (2006). Achieving your doctorate in education. Thousand Oaks, CA: Sage Publications.
Burns, T. (2004). Teaching, learning and study skills. Thousand Oaks, CA: Sage Publications.
Camic, P. M., Rhodes, J. E., & Yardley, L. (2003). Qualitative research in psychology: Expanding perspectives in methodology and design. Washington, DC: American Psychological Association.
Campbell, D. T., & Russo, M. J. (2001). Types of validity: Construct, trait, or discriminant validity. In D. T. Campbell & M. J. Russo (Eds.), Social measurement (pp. 10-21). Thousand Oaks, CA: Sage Publications.
Canton, B. (2002). Mathematics of data management. New York, NY: McGraw-Hill.
Capi?ski, M. (2004). Measure, integral and probability (2nd ed.). New York, NY: Springer.
Cartwright, N. (2007). Hunting causes and using them: Approaches in philosophy and economics. Cambridge, UK: Cambridge University Press.
Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data analysis. Belmont, CA: Wadsworth.
Chan, C.-y., Chawla, S., Sadiq, S., Zhou, X., & Pudi, V. (2010). Data quality and high-dimensional data analysis: Proceedings of the DASFAA 2008 workshops. Hackensack, NJ: World Scientific Publishing.
Chivers, B., & Shoolbred, M. (2007). A student’s guide to presentations. Thousand Oaks, CA: Sage Publications.
Chung, K. L. (2001). A course in probability theory. San Diego, CA: Academic Press.
Coakes, S. J. (2009). SPSS version 12.0 for Windows: Analysis without anguish. New York, NY: Wiley.
Collins, J. D., Hall, E. J., & Paul, L. A. (2004). Causation and counterfactuals. Cambridge, MA: MIT Press.
Congdon, P. (2003). Applied Bayesian modelling. New York, NY: Wiley.
Coolican, H. (2010). Research methods and statistics in psychology (2nd ed.). London, UK: Hodder and Stoughton.
Cottrell, S. (2005). Critical thinking skills: Developing effective analysis and argument. New York, NY: Palgrave Macmillan.
Cox, L. A. (2009). Risk analysis of complex and uncertain systems. New York, NY: Springer.
Cramer, D., & Howitt, D. (2004). The SAGE dictionary of statistics. Thousand Oaks, CA: Sage Publications.
Crawley, M. J. (2007). The R book. New York, NY: Wiley.
Croarkin, C. (2010). Measurement process characterization. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Cvitani?, J., & Zapatero, F. (2004). Introduction to the economics and mathematics of financial markets. Cambridge, MA: MIT Press.
Czaja, R., & Blair, J. (2005). Designing surveys: A guide to decisions and procedures. Thousand Oaks, CA: Pine Forge Press.
Dalgaard, P. (2008). Introductory statistics with R. New York, NY: Springer.
Davey, A., & Savla, J. (2009). Statistical power analysis with missing data: A structural equation modeling approach. New York, NY: Routledge.
Dawson, C. (2010). A practical guide to research methods: A user-friendly manual for mastering research techniques and projects Oxford, UK: How To Books Ltd.
Dodge, Y. (2008). The concise encyclopedia of statistics. New York, NY: Springer.
Dowe, P., & Noordhof, P. (2004). Cause and chance: Causation in an indeterministic world. London, UK: Routledge.
Drake, A. W. (2010). Fundamentals of applied probability theory. New York, NY: McGraw-Hill.
Druckman, D. (2005). Doing research: Methods of inquiry for conflict analysis. Thousand Oaks, CA: Sage Publications.
Dunleavy, P. (2003). Authoring a PhD: How to plan, draft, write and finish a doctoral thesis or dissertation. New York, NY: Palgrave Macmillan.
Durrett, R. (2010). Probability: Theory and examples (2nd ed.). Belmont, CA: Duxbury Press.
Elliott, A. C., & Woodward, W. A. (2007). Statistical analysis quick reference guidebook: With SPSS examples. Thousand Oaks, CA: Sage Publications.
Elliott, A. C., & Woodward, W. A. (2009). SAS Essentials: A guide to mastering SAS for research. San Francisco, CA: Jossey-Bass.
Enders, C. K. (2010). Applied missing data analysis. New York, NY: The Guilford Press.
Everitt, B. S. (2001). Statistics for psychologists: An intermediate course. Mahwah, NJ: Erlbaum.
Everitt, B. S., & Hothorn, T. (2010). A handbook of statistical analyses using R. Boca Raton, FL: Chapman & Hall/CRC Press.
Everitt, B. S., & Skrondal, A. (2010). The Cambridge dictionary of statistics (4th ed.). Cambridge, UK: Cambridge University Press.
Fales, E. (1990). Causation and universals. London, UK: Routledge.
Feller, W. (1967). An introduction to probability theory and its applications (3rd ed.). New York, NY: Wiley.
Fetzer, J. H. (1988). Probability and causality: Essays in honor of Wesley C. Salmon. Boston, MA: Reidel.
Field, A. (2005). Discovering statistics Using SPSS (2nd ed.). Thousand Oaks, CA: Sage Publications.
Fielding, N., Lee, R. M., & Blank, G. (2008). The SAGE handbook of online research methods. Thousand Oaks, CA: Sage Publications.
Filliben, J. J. (2010). Exploratory data analysis. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Fink, A. (2002). How to ask survey questions. Thousand Oaks, CA: Sage Publications.
Fink, A. (2002). How to report on surveys. Thousand Oaks, CA: Sage Publications.
Fink, A. (2002). The survey handbook. Thousand Oaks, CA: Sage Publications.
Fink, A. (2003). How to design survey studies. Thousand Oaks, CA: Sage Publications.
Fink, A. (2003). How to manage, analyze, and interpret survey data. Thousand Oaks, CA: Sage Publications.
Fink, A. (2003). How to sample in surveys. Thousand Oaks, CA: Sage Publications.
Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York, NY: Springer-Verlag.
Foster, J. J., Barkus, E., & Yavorsky, C. (2006). Understanding and using advanced statistics. Thousand Oaks, CA: Sage Publications.
Francq, C., & Zakoian, J.-M. (2010). GARCH models: Structure, statistical inference and financial applications. New York, NY: Wiley.
Freedman, D. A. (2009). Statistical models and causal inference: A dialogue with the social sciences. Cambridge, UK: Cambridge University Press.
Freeman, R. B., & Stone, T. (2006). Study skills for psychology: Succeeding in your degree. Thousand Oaks, CA: Sage Publications.
Freeman, R. E., Harrison, J. S., Wicks, A. C., Parmar, B. L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Cambridge, UK: Cambridge University Press.
Frey, B. (2006). Statistics hacks. Sebastapol, CA: O’Reilly.
Furberg, B. D., & Furberg, C. D. (2007). Evaluating clinical research: All that glitters is not gold (2nd ed.). New York, NY: Springer.
Gabbay, D. M. (2002). Handbook of the logic of argument and inference: The turn towards the practical. Boston, MA: Elsevier.
Gallavotti, G. (1999). Statistical mechanics: A short treatise. New York, NY: Springer.
Gazely, A. (2006). Management accounting. Thousand Oaks, CA: Sage Publications.
Gentle, J. E. (2002). Computational statistics. New York, NY: Springer.
Gerber, S. B., & Finn, K. V. (2005). Using SPSS for Windows: Data analysis and graphics (2nd ed.). New York, NY: Springer.
Ghosh, J. K., Delampady, M., & Samanta, T. (2010). An introduction to Bayesian analysis: Theory and methods. New York, NY: Springer.
Gibbons, J. D., & Chakraborti, S. (2003). Nonparametric statistical inference. New York, NY: Marcel Dekker.
Gilbert, N. (2006). From postgraduate to social scientist. Thousand Oaks, CA: Sage Publications.
Giri, N. C. (2004). Multivariate statistical analysis (2nd ed.). New York, NY: Marcel Dekker.
Given, L. M. (2010). The SAGE encyclopedia of qualitative research methods. Thousand Oaks, CA: Sage Publications.
Glymour, C. N. (2001). The mind’s arrows: Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.
Goldstein, H. (2011). Multilevel statistical models. New York, NY: Wiley.
Goldstein, M., & Wooff, D. (2007). Bayes linear statistics: Theory and methods. New York, NY: Wiley.
Gong, G., & Semmler, W. (2006). Stochastic dynamic macroeconomics: Theory and empirical evidence. Oxford, UK: Oxford University Press.
Good, P. I., & Hardin, J. W. (2003). Common errors in statistics (and how to avoid them). New York, NY: Wiley.
Gopnik, A., & Schulz, L. (2007). Causal learning: Psychology, philosophy, and computation. Oxford, UK: Oxford University Press.
Goyal, M. (2007). Computer-based numerical and statistical techniques. Hingham, MA: Infinity Science Press.
Graham, A. (2006). Developing thinking in statistics. Thousand Oaks, CA: Paul Chapman Publishing.
Gray, R. M. (2010). Probability, random processes, and ergodic properties. New York, NY: Springer.
Greblicki, W., & Pawlak, M. (2008). Nonparametric system identification. Cambridge, UK: Cambridge University Press.
Greener, S. (2010). Business research methods: Bookboon.
Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and random processes (3rd ed.). Oxford, UK: Oxford University Press.
Grisson, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. Mahwah, NJ: Erlbaum.
Groff, R. (2008). Revitalizing causality: Realism about causality in philosophy and social science. London, UK: Routledge.
Grover, R., & Vriens, M. (2006). The handbook of marketing research: Uses, misuses, and future advances. Thousand Oaks, CA: Sage Publications.
Guthrie, W. (2010). Process modeling. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Haimes, Y. Y. (2009). Risk modeling, assessment, and management (3rd ed.). New York, NY: Wiley.
Haining, R. (2003). Spatial data analysis: Theory and practice. Cambridge, UK: Cambridge University Press.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Prentice Hall.
Hamel, J., Dufour, S., & Fortin, D. (1994). Case study methods. Thousand Oaks, CA: Sage Publications.
Hamilton, J. D. (2010). Time series analysis Princeton, NJ: Princeton University Press.
Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques (2nd ed.). San Francisco, CA: Morgan Kaufmann.
Hancock, G. R., & Mueller, R. O. (2010). The reviewers guide to quantitative methods in the social sciences. London, UK: Routledge.
Hardy, M. A., & Bryman, A. (2004). Handbook of data analysis. Thousand Oaks, CA: Sage Publications.
Harrington, D. (2008). Confirmatory factor analysis. Oxford, UK: Oxford University Press.
Hart, H. L. A., & Honoré, T. (1985). Causation in the law (2nd ed.). Oxford, UK: Oxford University Press.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference and prediction. New York, NY: Springer.
Hausman, D. M. (1998). Causal asymmetries. Cambridge, UK: Cambridge University Press.
Hembree, B. (2010). Production process characterization. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Henry, G. T. (1990). Practical sampling. Thousand Oaks, CA: Sage Publications.
Hewson, C. (2003). Internet research methods: A practical guide for the social and behavioural sciences. Thousand Oaks, CA: Sage Publications.
Hoel, P. G. (2010). Introduction to mathematical statistics (3rd ed.). New York, NY: Wiley.
Hood, W. C., & Koopmans, T. C. (1953). Studies in econometric method. New York, NY: Wiley.
Hosmer, D. W., & Lemeshow, S. (1999). Applied survival analysis: Regression modeling of time to event data. New York, NY: Wiley.
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York, NY: Wiley.
Hoult, E. (2006). Learning support for mature students. Thousand Oaks, CA: Sage Publications.
Hsu, H. (1997). Schaum’s outlines: Probability, random variables, and random processes. New York, NY: McGraw-Hill.
Huberman, M., & Miles, M. B. (2002). Qualitative researcher’s companion. Thousand Oaks, CA: Sage Publications.
Huff, D. (1993). How to lie with statistics. New York, NY: Norton.
Hunsinger, J., Allen, M., & Klastrup, L. (2010). The international handbook of Internet research. New York, NY: Springer.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Thousand Oaks, CA: Sage Publications.
Jackson, H. (2005). Good grammar for students. Thousand Oaks, CA: Sage Publications.
Jain, A. K. (1988). Algorithms For clustering data. Upper Saddle River, NJ: Prentice Hall.
Jaisingh, L. (2000). Statistics for the utterly confused. New York, NY: McGraw-Hill.
Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge, UK: Cambridge University Press.
Jones, O., Maillardet, R., & Robinson, A. (2009). Introduction to scientific programming and simulation using R. Boca Raton, FL: Chapman & Hall/CRC Press.
Jupp, V. (2006). The SAGE dictionary of social research methods. Thousand Oaks, CA: Sage Publications.
Kalof, L., Dan, A., & Dietz, T. (2010). Essentials of social research. New York, NY: Open University Press.
Kaplan, M., & Kaplan, E. (2007). Chances are: Adventures in probability: Penguin.
Kazmier, L. J. (2009). Schaum’s outlines: Business statistics (4th ed.). New York, NY: McGraw-Hill.
Kenny, D. A. (1979). Correlation and causality. New York, NY: Wiley.
Kirchgässner, G., & Wolters, J. (2008). Introduction to modern time series analysis. New York, NY: Springer.
Kistler, M. (2006). Causation and laws of nature. London, UK: Routledge.
Kitchin, R., & Fuller, D. (2005). The academics’ guide to publishing. Thousand Oaks, CA: Sage Publications.
Klir, G. J. (2006). Uncertainty and information: Foundations of generalized information theory. New York, NY: Wiley.
Kotz, S. (2010). Encyclopedia of statistical sciences. New York, NY: Wiley.
Krause, A. (2010). The basics of S and S-PLUS (2nd ed.). New York, NY: Springer.
Krishnaiah, P. R., & Sen, P. K. (2010). Nonparametric methods. Boston, MA: Elsevier.
Krishnan, V. (2006). Probability and random processes. New York, NY: Wiley.
Kutner, M. H., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). New York, NY: McGraw-Hill.
Kuttler, K. (2001). Basic analysis. Princeton, NJ: Ave Maria Press.
Kvart, I. (1986). A theory of counterfactuals. Atascadero, CA: Ridgeview Publications.
Lange, K. (2003). Applied probability. New York, NY: Springer.
Laver, H. S., & Matthews, J. J. (2008). The art of command: Military leadership from George Washington to Colin Powell. Lexington, KY: University Press of Kentucky.
Lavine, M. (2005). Introduction to statistical thought. Amherst, MA: Michael Lavine.
Lavrakas, P. J. (2008). Encyclopedia of survey research methods. Thousand Oaks, CA: Sage Publications.
Lee, E. S., & Forthofer, R. N. (2006). Analyzing complex survey data. Thousand Oaks, CA: Sage Publications.
Lee, E. T., & Wang, J. W. (2003). Statistical methods for survival data analysis (3rd ed.). New York, NY: Wiley.
Lee, S.-Y. (2010). Structural equation modelling: A Bayesian approach. New York, NY: Wiley.
Leech, N. L., Barrett, K. C., & Morgan, G. A. (2010). SPSS for intermediate statistics: Use and interpretation (2nd ed.). Mahwah, NJ: Erlbaum.
Lindley, D. V. (2010). Understanding uncertainty. New York, NY: Wiley.
Lipschutz, S., & Lipson, M. (2000). Schaum’s outlines: Probability (2nd ed.). New York, NY: McGraw-Hill.
Litwin, M. S. (2003). How to assess and interpret survey psychometrics. Thousand Oaks, CA: Sage Publications.
Livingstone, D. (2009). A practical guide to scientific data analysis. New York, NY: Wiley.
Logan, M. (2010). Biostatistical design and analysis using R. New York, NY: Wiley.
Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: Sage Publications.
Long, J. S., & Freese, J. (2001). Regression models for categorical dependent variables using Stata (2nd ed.). College Station, TX: Stata Press.
Lowes, R., Peters, H., & Turner, M. (2004). The international student’s guide: Studying in English at university. Thousand Oaks, CA: Sage Publications.
Lumley, T. S. (2010). Complex surveys: A guide to analysis using R. New York, NY: Wiley.
Lynn, P. (2009). Methodology of longitudinal surveys. New York, NY: Wiley.
Mahan, M. D. F. (2010). The Chicago manual of style (15th ed.). Chicago, IL: University Of Chicago Press.
Maindonald, J. H., & Braun, W. J. (2010). Data analysis and graphics using R: An example-based approach (3rd ed.). Cambridge, UK: Cambridge University Press.
Mann, C., & Stewart, F. (2000). Internet communication and qualitative research: A handbook for researching online. Thousand Oaks, CA: Sage Publications.
Manski, C. F., & McFadden, D. (1981). Structural analysis of discrete data with econometric applications. Cambridge, MA: MIT Press.
Mauch, J. E., & Park, N. (2003). Guide to the successful thesis and dissertation: A handbook for students and faculty. New York, NY: Marcel Dekker.
McClave, J. T., Benson, P. G., & Sincich, T. (2001). A first course in business statistics (8th ed.). Upper Saddle River, NJ: Prentice Hall.
McIlroy, D. (2005). Exam success. Thousand Oaks, CA: Sage Publications.
McIlroy, D. (2010). Studying at university. Thousand Oaks, CA: Sage Publications.
Metcalfe, M. (2006). Reading critically at university. Thousand Oaks, CA: Sage Publications.
Milton, M. (2009). Head first data analysis: A learner’s guide to big numbers, statistics, and good decisions. Sebastapol, CA: O’Reilly.
Montgomery, D. C., & Runger, G. C. (2003). Applied statistics and probability for engineers (3rd ed.). New York, NY: Wiley.
Moore, D. S. (2009). The basic practice of statistics (3rd ed.). New York, NY: W. H. Freeman.
Morgan, G. A., Gliner, J. A., & Harmon, R. J. (2006). Understanding and evaluating research in applied and clinical settings. Mahwah, NJ: Erlbaum.
Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2004). SPSS for introductory statistics: Use and interpretation (2nd ed.). Mahwah, NJ: Erlbaum.
Morgan, S. L., & Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research. Cambridge, UK: Cambridge University Press.
Morss, K., & Murray, R. (2005). Teaching at university: A guide for postgraduates and researchers. Thousand Oaks, CA: Sage Publications.
Morville, P., & Callender, J. (2010). Search patterns. Sebastapol, CA: O’Reilly.
Muenchen, R. A. (2009). R for SAS and SPSS users. New York, NY: Springer.
Muenchen, R. A., & Hilbe, J. M. (2010). R for Stata users. New York, NY: Springer.
Mun, J. (2010). Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques. New York, NY: Wiley.
Myatt, G. J. (2007). Making sense of data. New York, NY: Wiley.
Myatt, G. J., & Johnson, W. P. (2010). Making sense of data II. New York, NY: Wiley.
Nelson, E. (1987). Radically elementary probability theory. Princeton, NJ: Princeton University Press.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Boston, MA: Elsevier.
Norman, G. R., & Streiner, D. L. (2003). PDQ statistics (3rd ed.). Hamilton, ON: B.C. Decker.
Ó Dochartaigh, N. (2007). Internet research skills: How to do your literature search and find research information online. Thousand Oaks, CA: Sage Publications.
Ostrom, C. (1990). Time series analysis regression techniques (2nd ed.). Thousand Oaks, CA: Sage Publications.
Pallant, J. (2001). SPSS survival manual: A step by step guide to data analysis using SPSS for Windows (10th ed.). New York, NY: Open University Press.
Paul, R. W. (2002). Critical thinking. Upper Saddle River, NJ: Prentice Hall.
Pawlik, K., & Rosenzweig, M. R. (2000). The international handbook of psychology. Thousand Oaks, CA: Sage Publications.
Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press.
Pett, M. A., Lackey, N. R., & Sullivan, J. J. (2003). Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Thousand Oaks, CA: Sage Publications.
Pham, H. (2006). Springer handbook of engineering statistics. New York, NY: Springer.
Phelps, R., Fisher, K., & Ellis, A. (2007). Organizing and managing your research: A practical guide for postgraduates. Thousand Oaks, CA: Sage Publications.
Powers, D. A., & Xie, Y. (2000). Statistical methods for categorical data analysis. San Diego, CA: Academic Press.
Prins, J. (2010). Process or product monitoring and control. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Prins, J. (2010). Product and process comparisons. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Punch, K. (2003). Survey research: The basics. Thousand Oaks, CA: Sage Publications.
Quah, S. R., & Sales, A. (2000). The international handbook of sociology. Thousand Oaks, CA: Sage Publications.
Quinton, S., & Smallbone, T. (2006). Postgraduate research in business: A critical guide. Thousand Oaks, CA: Sage Publications.
Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and MATLAB. New York, NY: Springer.
Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: Methods and case studies. New York, NY: Springer.
Reardon, D. F. (2006). Doing your undergrad project. Thousand Oaks, CA: Sage Publications.
Refaat, M. (2007). Data preparation for data mining using SAS. San Francisco, CA: Morgan Kaufmann.
Robert, C. P. (2007). The Bayesian choice. New York, NY: Springer.
Robert, C. P. (2010). The Bayesian choice: From decision-theoretic foundations to computational implementation (2nd ed.). New York, NY: Springer-Verlag.
Robert, C. P. (2010). Introducing Monte Carlo methods with R. New York, NY: Springer.
Rodrigues, S. (2010). Using analytical frameworks for classroom research. London, UK: Routledge.
Rogelberg, S. G. (2002). Handbook of research methods in industrial and organizational psychology. Malden, MA: Blackwell Publishers.
Ross, S. M. (1997). Introduction to probability models (6th ed.). San Diego, CA: Academic Press.
Ross, S. M. (2004). Introduction to probability and statistics for engineers and scientists (3rd ed.). Boston, MA: Elsevier.
Rothenberg, T. J. (1973). Efficient estimation with a priori information. New Haven, CT: Yale University Press.
Rubin, D. B. (2006). Matched sampling for causal effects. Cambridge, UK: Cambridge University Press.
Rud, O. P. (2001). Data mining cookbook: Modeling data for marketing, risk, and customer relationship management. New York, NY: Wiley.
Rugg, G., & Petre, M. (2007). A gentle guide to research methods. New York, NY: Open University Press.
Rumsey, D. (2003). Statistics for dummies. New York, NY: Wiley.
Rumsey, D. (2007). Intermediate statistics for dummies. New York, NY: Wiley.
Rumsey, D. (2009). Statistics II for dummies. New York, NY: Wiley.
Russo, F. (2008). Causality and causal modelling in the social sciences: Measuring variations. New York, NY: Springer.
Ryan, T. P. (2007). Modern engineering statistics. New York, NY: Wiley.
Rychlik, I., & Rydén, J. (2010). Probability and risk analysis: An introduction for engineers. New York, NY: Springer.
Salvatore, D., & Reagle, D. (2002). Schaum’s outlines: Statistics and econometrics (2nd ed.). New York, NY: McGraw-Hill.
Savin-Baden, M., & Major, C. H. (2010). New approaches to qualitative research: Wisdom and uncertainty. New York, NY: Routledge.
Schay, G. (2007). Introduction to probability with statistical applications. New York, NY: Springer.
Segaran, T., & Hammerbacher, J. (2009). Beautiful data: The stories behind elegant data solutions. Sebastapol, CA: O’Reilly.
Severini, T. A. (2010). Elements of distribution theory. Cambridge, UK: Cambridge University Press.
Shafer, G. (2001). Probability and finance: It’s only a game! New York, NY: Wiley.
Shao, J. (2005). Mathematical statistics: Exercises and solutions. New York, NY: Springer.
Sheskin, D. J. (2004). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC Press.
Shipley, B. (2002). Cause and correlation in biology: A user’s guide to path analysis, structural equations, and causal inference. Cambridge, UK: Cambridge University Press.
Sloman, S. (2005). Causal models: How people think about the world and its alternatives. Oxford, UK: Oxford University Press.
Smithson, M. (2003). Confidence intervals. Thousand Oaks, CA: Sage Publications.
Sobol, I. M. (1994). A primer for the Monte Carlo method. Boca Raton, FL: Chapman & Hall/CRC Press.
Song, P. X.-K. (2007). Correlated data analysis. New York, NY: Springer.
Soong, T. T. (2004). Fundamentals of probability and statistics for engineers. New York, NY: Wiley.
Spicer, J. (2005). Making sense of multivariate data analysis. Thousand Oaks, CA: Sage Publications.
Spiegel, M. R., Schiller, J. J., & Srinivasan, A. (2002). Schaum’s outlines: Probability and statistics. New York, NY: McGraw-Hill.
Spiegel, M. R., & Stephens, L. J. (1999). Schaum’s outlines: Statistics (3rd ed.). New York, NY: McGraw-Hill.
Stahlbock, R., Crone, S., & Lessman, S. (2009). Data mining. New York, NY: Springer.
Stamatis, D. H. (2010). Six Sigma and beyond: Statistics and probability (Vol. III). Boca Raton, FL: St. Lucie Press.
Steel, D. (2008). Across the boundaries: Extrapolation in biology and social science. Oxford, UK: Oxford University Press.
Steele, J., & Iliinsky, N. (2010). Beautiful visualization: Looking at data through the eyes of experts. Sebastapol, CA: O’Reilly.
Stephens, L. J. (2006). Schaum’s outlines: Beginning statistics. New York, NY: McGraw-Hill.
Sue, V. M., & Ritter, L. A. (2007). Conducting online surveys. Thousand Oaks, CA: Sage Publications.
Sumathi, S., & Sivanandam, S. N. (2006). Introduction to data mining and its applications. New York, NY: Springer.
Suppes, P. (1970). A probabilistic theory of causality. Amsterdam, NL: North-Holland Pub. Co.
Sutton, S., Baum, A., & Johnston, M. (2004). The SAGE handbook of health psychology. Thousand Oaks, CA: Sage Publications.
Tabachnick, B. G. (2001). Using multivariate statistics (5th ed.). Boston, MA: Allyn and Bacon.
Tavaré, S. (2004). Lectures on probability theory and statistics. New York, NY: Springer.
Thody, A. (2006). Writing and presenting research. Thousand Oaks, CA: Sage Publications.
Thompson, B. (2007). Score reliability: Contemporary thinking on reliability issues. Thousand Oaks, CA: Sage Publications.
Tijms, H. C. (2007). Understanding probability: Chance rules in everyday life. Cambridge, UK: Cambridge University Press.
Tobias, P. (2010). Assessing product reliability. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Tobias, P., & Trutna, L. (2010). Process Improvement. In C. Croarkin & P. Tobias (Eds.), Handbook of statistical methods. Washington, DC: NIST/SEMATECH.
Train, K. E. (2003). Discrete choice methods with simulation. Cambridge, UK: Cambridge University Press.
Tsay, R. S. (2005). Analysis of financial time series (2nd ed.). New York, NY: Wiley.
Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.
van Belle, G. (2002). Statistical rules of thumb. New York, NY: Wiley.
van Staveren, M. (2006). Uncertainty and ground conditions: A risk management approach. Boston, MA: Butterworth-Heinemann.
Venables, W. N. (2010). Modern applied statistics with S (4th ed.). New York, NY: Springer.
Viswanathan, M. (2005). Measurement error and research design. Thousand Oaks, CA: Sage Publications.
Vose, D. (2008). Risk analysis: A quantitative guide (3rd ed.). New York, NY: Wiley.
Walliman, N. (2005). Your research project. Thousand Oaks, CA: Sage Publications.
Walliman, N. (2006). Social research methods. Thousand Oaks, CA: Sage Publications.
Walpole, R. E. (1998). Probability and statistics for engineers and scientists (8th ed.). Upper Saddle River, NJ: Prentice Hall.
Walton, D. N. (2006). Fundamentals of critical argumentation. Cambridge, UK: Cambridge University Press.
Wasserman, L. (2004). All of statistics: A concise course in statistical inference. New York, NY: Springer.
Wellington, J. J., Bathmaker, A.-M., Hunt, C., McCulloch, G., & Sikes, P. (2005). Succeeding with your doctorate. Thousand Oaks, CA: Sage Publications.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York, NY: Springer.
Wilcox, R. R. (2009). Basic statistics. Oxford, UK: Oxford University Press.
Wilkinson, D. (2005). The essential guide to postgraduate study. Thousand Oaks, CA: Sage Publications.
Williamson, J. (2005). Bayesian nets and causality: Philosophical and computational foundations. Oxford, UK: Oxford University Press.
Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco, CA: Morgan Kaufmann.
Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford, UK: Oxford University Press.
Woolfson, M. M. (2010). Everyday probability and statistics: Health, elections, gambling and war. Hackensack, NJ: World Scientific Publishing.
Zelterman, D. (2010). Applied linear models with SAS. Cambridge, UK: Cambridge University Press.
Zwillinger, D. (2000). CRC standard probability and statistics tables and formulae. Boca Raton, FL: Chapman & Hall/CRC Press.